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Abstract. This work deals with the inverse problem assedidé 3D crack identification inside

a conductive material using eddy current measurtsmén order to accelerate the time-
consuming direct optimization, the reconstructisrpiovided by the minimization of a last-
square functional of the data-model misfit usingcgp mapping (SM) methodology. This
technigue enables to shift the optimization burfilem a time consuming and accurate model
to the less precise but faster coarse surrogatelmiodthis work, the finite element method
(FEM) is used as a fine model while the model basedhe volume integral method (VIM)
serves as a coarse model. The application of tygoped method to the shape reconstruction
allows to shorten the evaluation time that is negplito provide the proper parameter estimation
of surface defects.

1 Introduction

The Eddy Current Testing (ECT) type non destrectasting (NDT) is mainly of interest
for testing the quality of metallic structures. Aoting to Faraday's law, the capability of a
low frequency field produced by a source probe doetrate the conducting object makes
possible to provide the structure recognition dygnoduction lines or in-service inspection
of industrial parts, etc. More precisely, the aggdion of this approach enables to find metal-
loss regions produced by corrosion, stress oruafignd so on. The perturbation of eddy
currents that results from the interaction of atbmagnetic field with one or more defects
within conductors, can be observed as a variatidhe measurement signal. From this point
of view, finding the shape of an examined objecttlo# image of conductivity inside
materials based on this signal is just a type oinaarse problem of structure recognition.
The voltage or impedance obtained for the multifiency of exciting current as well as a
different position of the sensor is mostly usedakected data. Hence, this work is addressed
to the problem of a 3D bounded void defects recoasbn in a conductive structure arising
in ECT-type of NDT. This type of problem appearsriany industry branches, therefore, its
solution finds a wide application in e.g. atomi@ggy, automotive, marine manufacturing
and aeronautic industry.

For the reconstruction of defects in a conductibgect, it is necessary to solve the eddy
current inverse problem that is inherently ill-pgdgsand non-linear [1]-[2]. For the purpose
of finding its solution a lot of methods have atigabeen developed. Among these
techniques one can find the deterministic and ststot algorithms, pre-calculated data
approach, methods based on the evolution strategtatistics, linear or quadratic models,
artificial neural network or fuzzy-logic, e.g. [BH.

However, engineering optimization requires highlycurate numerical models, which
imply an excessive computational cost, e.g. 3D ktians for complicated geometries.
From this point of view, the need exists to speedhe minimization procedure of defects



reconstruction arising in the ECT. In this contekie two-level iterative algorithms for
solving the eddy current inverse problem are hexelbped.

Therefore, in the present work, we tackle the rig@eproblem by combining the
Aggressive Space Mapping and Manifold Mapping oation with Tikhonov
regularization technigue under the assumption teects can be approximated by a
piecewise conductivity distribution. For the purpas a coarse model optimization, the
regularized Gauss-Newton iterative method is usedjeneral, these techniques assume
the existence of two models: an expensive, soaéilhe model and a coarse model, which
is used for generating surrogates that need tooappate the fine model. In this way, the
direct optimization of the fine model is replaceddn iterative optimization and an update
of the cheaper to calculate but less accurate gatganodels based on the coarse model.

This very efficient, acknowledged engineering teghe was not up to now applied for
the purpose of defects recognition from the EChaligHowever, recently, this method has
become the subject of very intense research iningné solution of optimization and
inverse problems in electromagnetism e.g. [10]-[1Bfom this point of view, its
application in the proposed area is promising. Shmilar inversion methodology was
applied to defects characterization based on Maghkkix Leakage measurements [13].

For the numerical verification, the model of EG/Btem, a variant of which was analyzed
in [14], is applied. Moreover, in the presented eucal example it is assumed that the
distribution of conductivity in the region of intst, located in a conductive material, can
be described using a known function. Note thatcaitiin the usage of the here proposed
SM-based inversion procedure allows considerabtytehing the time needed for defect
reconstruction arising in ECT - type NDT, it islistiot the real-time application of defect
recognition, which is generally a well-known drawkaof the optimization algorithms
based on the gradient methods.

2 Eddy Current type Testing -type NDT

The eddy current inspection techniques are notrddise and contact-less quantitative
methods. Among others, its application allows toorstruct the cracks and flaws in a
conductive material placed on the surfaces asasahside the material. The main concept of
the ECT method relies on the introduction of loegiiency time-harmonic electromagnetic
field in the conductive media, and on the processihthe measured signal in order to
conclude about the structure of the object undetystSince this signal contains the needed
information on the discontinuity, the impedance@tage of the probe-coil can be applied to
reconstruct the size of a flaw and its position.

Figure 1. View of the probe-coil and the conductive plaiththe region of interest



The configuration of the simplified ECT system seown in Fig. 1. In general, the
evaluation of the material condition can be madeetiaon measured signals generated by
an eddy current probe. In the quantitative approacaluated also in this work, the
parameters of a crack, e.g. width, length and degath be assessed using the analysis of
the field distribution in the area of interest.

Engineering optimization demands mostly the uséineé-consuming forward numerical
models. For example in the ECT technique, threeom@joups of numerical methods are
commonly used for the forward simulations. Thet fijioup involves the numerical analysis
such as the finite element method (FEM) e.qg. [, finite difference method (FDM), and
the volume integral method (VIM) [16]. Although thenable to build very accurate models,
their main drawback is their expensive computatiaoat. To overcome this problem, one
can apply integral methods like the boundary elémegthod (BEM) for the simulation of
eddy current inspections of defects having a niadéigor narrow opening [17]. Especially,
the so-called Bowler model is particularly intemegt from the Space Mapping (SM)
optimization viewpoint e.g. [18], as it enabledital the numerical approximations of narrow
and arbitrary narrow-shaped cracks in a numericfigient way. The analytical models
comprise a second important group. Unfortunatélgy tare generally based on symmetry
assumptions in the considered models and thertifeyecan be applied only in 2D cases e.g.
[19]. Thus, these methods cannot be used for thei@o of the 3D eddy current inverse
problem that is considered here. The last groufediniques are based on atrtificial neural
networks or fuzzy logic techniques [8] [9], and #nerefore very fast. Nevertheless, their
application is rather limited to the area in pars@neapace, for which the model has been
trained.

The availability of the forward models, based ba FEM simulation as well as integral
methods for inspections of narrow cracks, allowsouspply the space mapping optimization
to defect recognition arising in the ECT type NDOherefore, in this work, FEM simulations
are used as a fine model, while the reduced VIMaggh for 3D flaws has been used as a
coarse model after introducing some simplificatiorisis speeds up the calculation and still
results in appropriate numerical approximationthefelectromagnetic field [3].

2.1Model of the considered test problem

In the present work we investigate a simplified eloaf a nondestructive testing system,
which is a variant of the simplified model of th&€E system analyzed in the JSAEM
benchmark problem [24]. This model, shown on Fig.1, consists of agadwe coil, located
above a flat plate with a surface crack. For thvelige problem, we focus on a limited area
of the conductive plate, the so-called region ¢¢nest. Its size, as well as the size of the
defects under consideration, is based on the sixayples analyzed in [3] and [28]. Thus,
in our work we consider the model of arrangemeat tonsists of air domairi3; and D3
(0=8.85410"F m?, =4 10" H m%) and the regio®, ( o, o, So=0.98 10° S m?),
that is a plate consisting of the conductive mktabNEL 600. In the restricted area of the
last region, it is assumed that the 3D slot wittoaductivitys(r) (r = (x,y,2)), bounded by a
domain , is placed in the conductive plate. In the presentamerical tests, the following
types of defects are considered: ellipsoidal, cyloal and cubical cracks, that are
reconstructed using ti&pace Mapping based inversion procedure. The sadirite field,
located in the regiol;, is a 140 turn axis-symmetric shape type of thewih internal
and external diameters of 1.2 and 3.2 mm respdgtiaad has a thickness of 0.8 mm.
Additionally, in the considered model, this prolmtis asymmetrically placeg, = 1mm,

Yeo = 0 mm in order to guarantee a suitable coverirt®interest region. The exciting coll



is driven by a sinusoidal varying current with fuegcyf =100 kHz (skin depth = 1.5
mm). In the ECT non-destructive method, the solutd the forward problem allows to
determine the probe impedance variation. In the tesler consideration, the probe
impedance is calculateddt= NxxNy = 7x7 = 49 coil positions, with a lift-off paraneetof
0.5 mm. The scanning points during the simulati@as followsx has been changed from
- 0.3 to 0.3 mm with step 0.1 mm, whi)feranged from - 0.75 to 0.75 mm with step 0.25
mm. The simulation of one measurement scan usiR§ analysis for 49 positions of a
probe-coil requires about 3.26 h on our system

For the purpose of defect reconstruction, a contimnaof a fine model (FEM
simulations) with a coarse model (a simplified VH#igproach) is applied by means of the
SM methodology. In this way the advantages of W@ dpproaches can be combined in the
proposed inversion algorithm.

2.2FE analysis as a fine forward model

In the proposed approach, a finite element ({f@Bylel is constructed in order to obtain
the accurate solution of the ECT problem. The 3Riehehown on Fig. 1 is based on the
A-V formulation, whereA means the magnetic vector potential, whilestands for the
electric scalar potential. Thus, the 3D field disition for a time-varying harmonic case
after neglecting a displacement current and udnegQoulomb gauge is governed by the
following equations [20]

20 AR Kix A+ s (jwA+RNV)=0inD, )
m m
Nxs (jwA +W) =0in D, (2)
= NI ST D, ., ®3)
m ,
where considered regior3; 3 and D, stand for the surrounding free space and the eddy
current domain, while, mean the permeability and conductivity of the raeamid the

angular frequency of density current excitatiSnrespectively. The model of the ECT set
up after providing the spatial discretization wigtrahedral finite elements is presented on
Fig. 2.

Figure 2. 3D finite element mesh of ECT system

! The simulations are conducted on a 64 bit platftvan consists of 2 dual core Intel Xuon of 2.0 Giith
32 Gb RAM memory.



After expanding th&\, V potentials in terms of shape function accordinghe Galerkin
technique and imposing a proper boundary conditio@,solution of the forward problem
defined by equations (1)-(3) takes the form of steay of algebraic equations. This equation
system may be solved by using either a direct dgteaative method. In our case, the GMRES
solver was applied for this purpose.

2.3Integral formulation for an eddy current speciatioa

In contrast to the above-mentioned FE analgsisintegral formulation is applied where
only the so-called support domain of the plate iiaddd into a regular grid of cubes.
Moreover, we assign to each volumetric elemenhefdonductive material an uniform value
of the electrical conductivity. Therefore, in sugbproach the overall conductivity profile of
the support domain consists of a piecewise conslistribution of real values with some

discontinuities that correspond with the cracks.
a)

Figure 3. Model applied in the integral formulation a) Viefyprobe-coil with a gridded non-conductive suefatot
b) the type of considered defects shapes: ellipsodglindrical and cubical, respectively

Let us nowconsider a three-layer stratified medium that sated in the 3D Cartesian
coordinate system, shown on Fig.3. Taking into antdhat only the linear, isotropic and
non-magnetic media are investigated, the configamatdf the analyzed model consists of
the air region®; andDs ( o and (), andD; beinga conductive plate made of Inconel 600
(0, 0,S0), in which the 3D bounded slot with conductivits(r) is placed. As a
consequence, the different media are charactebiyg¢ldeir propagation constarks

k! =k?=w’m g whenrl D, D,

k@)=~ R
ks » jwm s, whenr | D,,

(4)
wherei is changing in the range of 1 to 3 dependent omdéseribed regions.
Furthermore, we assume that the volumetric defath the finite support domairv;
specified by widthxs, lengthys, and deepnesg can be described at any poinbty means of
the so-called contrast function

s(r)_so '1 Whenri Vf

c(r)= (5)

S, 0 otherwise,
Thus, the distribution of eddy currents, inducedhia plate due to the excitation coil in the
presence of defect in the model, can be expresged Bredholm second-kind vector
integral equation. The application of the Greerisorem and taking into account the



boundary conditions at material discontinuitiesva@d as the radiation condition at infinity,

allows to define the associated electric fieldrehsition as the integral equation e.g. [21]
EM)=EVF)+K G foa( Fr(ydgr, ol D, (6)

D,

Here, E'(r) means the incident field caused by the primanyre® when the defect is

absent in the model, whil&(r) is the total electric field. The last ter@(r|ro) is the dyadic

electric-electric Green’s function (both source diettl observation irD;), which satisfies

the dyadic Helmholtz equation [22]

N'R“G(rire} KB €t dtr o) ™
with | the unit dyad, the Dirac impulse that here represents a unittpmirent source

with orientation along the three coordinate axesrédver, for the eddy current problem,
the following reciprocity relationshigs(r |r,)=G ¢ f ,)" is satisfied, whereT means
transposition operator [20]. After multiplying edia (6) bys, (r) and defining

PO =cry®) (8)
as the incident eddy current sources associatédetgrimary field, which is set to null
except forv;s. Finally the eddy current phenomenon inside tHametric defect is described
by

P(r)=PO(r)+k G Ir)c( S )d,rr, ,J D, 9)

D,
The incident eddy current density in the centethefvolumetric element of a breaking slot
can then be computed using Dodd and Deeds apprid®hor the numerically very
effective Truncated Region Eigenfunction Expansi@REE) method introduced by
Theodoulidis [23]. Since thB(r) is known, the variation of the impedance aftangithe
reciprocity theorem relating the scattered fieldta colil E(S)(r) and incident field at the
flaw EV(r), is given by [19]:
1

2
0D,

DZ =- JOMPr)E iV, (10)
wherel means the magnitude of the excitation current. ifkegration is conducted over
the volume of the flaw anB(r) may be interpreted as the effective current digtEnsity at
the slot resulting from the change in conductiagtween the host and the flaw. Equation
(9) with the unique constrai®,(r) =0 on the crack surface, after discretizationthod
defect volume with a regular cubical grid Mfelements and the application of the point
matching procedure, is then transformed to lingstesns of equations

[e]lPl [] oy

Here, Jo means a vector of incident eddy current densgiyis a square matrix with the
Green’s functions elements, aRdstands for a vector with the unknown dipole degnfst
each element of the discretized defect. Certathly solution of the vector integral equation
(9) has this advantage that it accounts for all Wave phenomena in the defect area.
However, on the other hand, such approach demahaghaomputational load. Therefore,
we decided to derive the coarse model not fromftitlevector equation (10). For this
purpose, the reduced VIM approach for a scalar3ietquation, is used.



2.4Coarse model as the reduced to the only one compdftiel model

This approach is analogous to the investigaimsented by the authors in [24], [25].
According to their research, accounting for onlg @emponent of electric fields, in our case
the xx component of the dyadic Green function, as welbmaly the x component of eddy
current density, leads to a good numerical appration of an electric field. This kind of
simplification implies the reduction of the vectotegral equation (9) to a scalar 3D version.
For the analysis of the ECT model in the Cartes@rdinate system, we propose to apply an
analogues approach. Thus, when the unique cortstfananishing normal component of the
eddy current density on the crack surface, in aged(r), is defined as follows [21], [22]

J.(r) =0, (12a)
the linear system of equations (11) can be writen
PX TXX Txy TXZ ‘1) X
P, =- 3 T, T, T, O . (12b)
Pz ? sz sz Tzz O

with inverse matrixT = G™. Since the Green dyad is diagonally dominant, ritagrix of
system equationG and the inverse matrik should be diagonally dominant, too. Therefore,
the other dominant terms 1ik§, and T,, can be neglected due g, =Jo, = 0, which
implies thatP, Py andP; sinceT,y is also dominant oveély, andTy.. The justification for
such approach is e.g. the inspection of steam gtemeubes, where usually the cracks are
very thin and long. This is the reason why thergagon of the defect can be first discovered
based on measurement data. Thus, finally the ieqgu@&) can be further reduced to its orly
component version which can be analyzed in a 3Defnod

ROM)=-cO)K Gl [ )R o)dor T D, (13)
DZ

In short, after the discretization of the defeotume and the application of the point
matching procedure, the eddy current phenomenaidancoarse model is described by
equation (13). In this way a coarse model has besaited on the basis of the fully integral
formulation defined by equation (9), where someeticonsuming sub-procedures related
to the electric field computation were not includéd reach the convergence in the field
computation, the same criterion for a coarse madeah [24] is applied. Thus, the size of
the voxels is set to approximatelyq)®, where is the standard skin depth. Finally, for the
purpose of the inversion procedure for 3D flawg tteanands at least 2D measurements or
synthetic data, the impedance variation of the @il for differentx. andy. positions
and given the value of a lift-off parameter is cédted using equation (10).

2.5Inversion procedure in a coarse model

The main advantage of such defined coarse modetcesdly when used for the solution
of the eddy current inverse problem, is the abtlitydentify any number of defects, which
can be described by means of the same grid, obasis of the pre-computed data. Thus,
the inverse problem can be defined as follows. Wassuming that the crack can be
specified by the following set of parameters

p={py Py, B} (14)
and the cost function is given by



Q(p)=% (02, -07) (029), -DZ) (15)

then the process of defect identification can bedocted by the minimization of such
defined last-square functional of the data-modeleii Z(p); denotes th¢-th component
of the impedance change that is simulated in tlaessomodel andZOj denotes the target
impedance variation measured for jkitb probe-coil position.

The application of the Gauss-Newton (G-N) athon with Tikhonov regularization for
defects reconstruction requires first the calcatatf the gradient of the cost function (15).
However,the crucial component of the gradient is the sefigitinformation. Therefore,
the numerically efficient adjoint Tellegen meth@s], [27] is used for this purposafter
assuming some parameterization of the flaw functioh f(p, r), the sensitivity formula
is defined as

1f (p,r) d.

fiZ;
Sji = =5
b v
Here,E(r) means the electric field when the flaw is absethije E(r) refers to the adjoint
field. Additionally, the integration is taken over the wwle of theeth flaw voxel

Moreover,when the impedance magnitude is considered, thatsély can be computed
using

ENE(F) (16)

_Re@Z;)Reg; )+ Im0Z )Imf5 )

. Dz, | '
It is worth noting that the gradient of the costdtion can be efficiently calculated on the
basis of equation (16) and/or (17) when using jpreguted data-However, due to fact that
the reconstruction of the defects parameters ey hampered by the inherently ill-
posed and non-linear nature of the eddy currer@rse/problem, a regularization technique
such as the Tikhonov method with the Generalizeds€kalidation GCV() needs to be
applied[28]. The result for the application of the described iesi@ procedure for the
identification of the cubic-like shape surface @efe shown on Fig. 4.

(17)

Figure 4: The convergence history for the reconstruction adfilaoidal crack when using the coarse model
based on the regularized G-N algorithm.

In the numerical example, the synthetic data atainekd by solving equations (13) and
(10) corresponding to the forward coarse model the crack dimensions as follows:
width a = 0.6 mm, lengthb = 2.0 mm and deptb= 1.0 mm. The search region consists of
No =Nx" Ny Nz =8 10 5= 400 voxels, where each cell of the support donvairhas a



size of x° v z=0.10.25 0.125 mm. Furthermore, the probe-coil is fed byimet
harmonic excitation current with frequenfcy 100 kHz. Although the shape of the crack is
reconstructed after 16 iterations and is computatlp fast (on average only a few
minutes),the obtained solution is not acceptable from trmuexy viewpointThe level of
the relative mean identification error when usindiist model is about
15-20%. Therefore, the Space Mapping optimizatioedseto be applied for further
improving the accuracy of defect identification.

3 Two — level optimization method

In the former sections, on the one htmelaccurateandtime-consuminguumerical method
were presented to solve the considered ECT forweostdlem. On the other hand, theich
faster,but less accuratesscheme based on the reduced VIM approach was showrder to
speed up the inversion procedure, a Space Mapgingad, which enables to combine both
the fine and coarse models to come tashtandaccuratealgorithm for defect reconstruction.

3.1Introduction

Space Mapping (SM) is a highly recognized, effitieptimization method that has found a
broad application to solve a wide range of engingegproblems arising in various industry
fields [10]-[13], [29]-[31].The main concept behif®M is to replace the traditional direct
optimization procedure based on the accurate asalysa computationally slow fine model
with an iterative optimization and updating of axs® model, which therefore, is cheaper to
evaluate but also less precise. In consequenceotrse model is used for an exploration
while the fine model is considered only for a ledtnumber of times (i.e. exploitation). An
example of a fine simulation might be a model alexice analyzed in an electromagnetic
simulator or a numerical model of a non-destrucsiygtem such as ECT, MFL. According to
the SM methodology, an analytical formula descghiine behaviour of the device, a circuit
simulation of this device or a simplified numerisaheme after reduction of time-demanding
subroutines would serve as a coarse model. Assuthaigthe misalignment between both
models can be minimized or is just not significaiie SM optimization allows for an
essential reduction of the CPU time needed forioibi reliable results typically after only a
few iterations, this in contrast to direct optintiaa procedures [10].

In many practical applications in the engineefialgl the goal is to solve

Xt =arg, min £ Ry &) (18)

Here,R; : X; ® R" denotes the response vector of the fine modelgvehiunctional~ (cost
function) can be defined by e.g. a second norm

F(Rt () =|R¢ (- RI(). (19)

whereRY(x)= R?,,R,,..., )y means the target response.

Instead of solving problem (5) using direct optiatian of the time-consuming fine model,
we consider surrogate models which are a good kmatoximation of the fine model. It is
also assumed that they are computationally nonresipe and therefore suitable for an
iterative optimization. From these reasons, we stigate an optimization algorithm that
produces a sequence of resyff&(i = 1,2,..K)

x{) =arg rT)1(inF RY k)), (20)



while R(Si) (x) denotes a family of surrogate models. However stireogates are created on

the basis of a coarse model and an auxiliary mgpgéfined during the so-called parameter
extraction process by means of

pi? =arg rrginHRf (x“)) - ﬁs(x“ p“)” (21)

Here,RY (x) =R 4(x,p")is a generic SM surrogate model, that is a coarsgetR, with a

typically linear transformation, wheR. : X ® R™[10].

Different types of surrogate models have beenentesl in the literature during the last

decade [10],[13], e.q.:
- models that use typically a linear transformation the parameter space e.g.
Aggressive Space mapping (ASM), or an input SM [{D]],
models applied in their constriction, the transfation in the response parameter
space, for instance, an output SM [13] or the Madif Mapping
optimization[29],
models that exploit the parameter and responseespacorder to align the surrogate
with a fine model, e.g. the Response and Parari&tpping [12],
the Implicit Space Mapping [32] which allows thepagmtion of the parameters and
design variables used in the process of alignmieatsurrogate with a fine
model,
- the custom models that exploit the parameters whrehcharacteristic for a given
design problem [10].
Summarizing, the flow of a SM-based algorithm camlitten as [31]
Step 1) sdt= 1 and choose the initial solutio®for the given fine
model and coarse model, _
Step 2) calculate the fine model in orderind Ry (x"),
Step 3) evaluate in the surrogate m&iél using (21),
Step 4) based off) andR<" determinex” using (20),
Step 5) if the stop condition is not fulfillechoose step 2, otherwise finish
the calculation.

In this paper, two types of two-level techniques @snsidered for solving the eddy current
inverse problem: the ASM method and the MM algonithAssuming thg-dimensional
vector of the probe impedance in case of the cq@irs® model for certain-dimensional
flaw parameters vectox.I X (X1 X is denoted bycx)l . (f(x)T ), the
optimization problem (18) can be reformulated amola in an explicit form as

f(x,)- yH , (22)

wherey means the target impedance variation, which iainbt by either simulation or as
a result of the conducted measurements.

Xy =arg, min

3.2Aggressive Space Mapping

In the space mapping methods, a coarse modskis for generating surrogates that need
to approximate and exploit a fine model. Thereftiie,mapping between parameter spaces
of both models is constructed, so that

f(x¢)»c(p(x;)) (23)
can be satisfied. Hence, in this case the suislnegates are found as a result of the so-



called parameter extraction process (PE) that isiged in such a way that the coarse
model matches the fine model.
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Figure 5. Flowchart of inversion procedure based on ASMvatgm.

In the aggressive type of the SM method, the sategodel in thé-th iteration is given
by [10]

s (%) =¢(p® (X)), (24)
while the next result;® can be computed using

1188 (%)~ v 25)

(k) = i
Xy =arg min

with a mapping function defined as

p® (xf) - p(x(fk’) + B® (xf . x(fk’). (26)
Here,x" is thek-th quasi Newton iteration witB® being an approximation of thex;)
Jacobian that can be updated using Broyden’s ramkula. Thus, in this way the direct
optimization of the fine model is replaced by therative optimization of the cheaper to
calculate but less accurate surrogate models lmas#te coarse model.

However, the inversion procedure based on t8& Aechniques might fail if there is a
significant misalignment between both models resperand in such case the solution of
optimization problem defined by (25) does not neagly coincide with the fine model
optimum [29].



3.3Manifold Mapping

In contrast to the SM approach where mappirgerformed in the parameter space, the
MM algorithm employs an affine mapping only betwdée responses of the coarse and
fine models. Thus, in order to define an affine n@gween two vector spaces, this
technique applies a linear transformation followmd a translation [29]. In this way it
performs the response correction by establishiagreogate model with an affine mapping
in the response spaces of both considered models.
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Figure 6. Flowchart of inversion procedure based on MM optation.

The MM algorithm uses the following type of surrtganodel
St () =1 (x87) +0 (c(x,) - ¢{x?)). (27)

whereD¥ is a regular, so-called rotation matrix, aifg™) plays a role of a translation
vector. Under the assumption that x; thex{**" is defined in the MM algorithm as

x(fk) :argxgli(THs(,\';gA x )- y” (28)

It follows from (27) and (28) that, the Manifold ldjging technique can be used without a
necessity of computing the exact gradient infororati

4 Result for the defects reconstruction

In order to verify the proposed inversion tegoe based on SM optimization, we
consider the reconstruction of three different krabapes, as shown in Fig. 7. In the
presented numerical examples, the conductivityridigion in an anomalous area of a



conductive material is described by means of a knéwwnction. The parameters of the
artificial cracks are given in Table 1.

Table 1 Parameters of the artificial cracks

| Crack name | a/ width [mm] | b/length [mm] | ¢/ depth [mm]
| Crack 1 éllipsoida) | 0.3 | 1.0 | 0.5
| Crack 2 tuboida) | 0.6 | 2.0 | 0.5
| Crack 3 ¢ylindrical) | 0.3 | 1.0 | 0.5

Synthetic data is generated by solving the adedoateard problem, which is treated as the
reference impedance for solving the inverse probl€he FE simulations are calculated
using equations (1)-(3) and acts as fine modeliwithe SM scheme. The ECT system
under investigation is depicted in Fig. 8. It catsiof 94255 finite elements and the number
of degree of freedom is solved for 143075. The deadomain has a size of
D=DXDYsDZs=0.8 2.25 0.625 mm, and is placed in the plate made of Inc608
with dimensions 2222 1.25 mm. The size of probe as well as its locabraversus the
search area is shown in Fig. 8. For such configamathe probe impedance is measured at
N = Nx" Ny =7"7 =49 coil positions, with a lift-off parameter @5 mm. The simulation of
one measurement scan in the FE case for 49 pasitiotihe coil, whe is changing from -
0.3 to 0.3 mm with step 0.1 mm agds ranging from - 0.75 to 0.75 mm with step 0.25
mm, requires about 3.26 h on our system.

Figure 7. The shape of surface slots under consideratiogllipsoidal shaped defect, b) cylindrical flaw,
¢) cubical surface slot

Figure 8. View of the probe-coil, the conductive plate wiitle region of interest

As coarse model, the scalar 3D VIM described byagqo (13) with condition (12a) is
considered. In the coarse model, the test domain dw&ided into
ND =Nx" Ny" Nz =8 10 5 =400 voxels, each of sizg” v z=0.1 0.25 0.125 mm.
It is worth mentioning that the single-time anatysi this model for 49 positions of the
probe takes about a few seconds using pre-compidéa while the coarse model



solution during the inverse problem itself, alssdzh on the pre-computed data, takes
only about 5 min. These features make this appreacfectly suitable as an efficient
coarse model. The result of the simulation in bothdels is presented in Fig. 9. For the
calibration purpose, one point procedure using makvalue is used.

cjo.z

14 Z) [22]

¥ [m]

x [m]
Figure 9. The result for the calibration of the FEM and teduced VIM model for the assumed reference crack

The two above-mentioned SM techniques are firsttéempnted and then tested in eddy
current inverse problem.

4.1Defects reconstruction based on ASM algorithm

The result of reconstruction process based oretiidarized ASM algorithm is summarized
in Table 2. Hence, the first column shows the \aloiestarting points for the three kinds of
considered cracks, the second column indicatesvétees of the mean relative error
calculated after providing the initial reconstroatiin the coarse model, while the third and
fourth columns represent the number of coarse arel rhodel evaluations, respectively.
Finally, in the last column one can see the valuth® mean relative error (i.e. accuracy of
inversion procedure) associated to the reconstiymeameters (with values presented in the
next to last column) of defect.

Table 2 Inversion results for regularized ASM optimzation of investigated crack

Name of Initial MRE No of coarse | No of fine Reconstructed MRE for x;
defect point for X model model size of defect [%0]
[mm] [%] evaluation evaluations
Crack 1 0.20 0.23
(ellipsoidal 0.75 12% 6 7 1.04 9.7%
flaw) 0.375 0.49
Crack 2 0.100 0.559
(cuboidal 0.375 | 14% 5 6 1.947 7,2%
flaw) 0.187 0.388
Crack 3 0.100 0.319
(cylindrical 0.375 | 13% 4 5 0.986 8.6%
flaw) 0.187 0.408




The distribution of both impedances: target andt théter providing the defects
reconstruction is presented on Fig. 10, 11 ance&@actively.

Figure 10.Comparison of the target impedance magnitudé-igure 11.Comparison of the target impedance magnitude

with that obtained at the ASM optimal point in cage

ellipsoidal defect (crack 1)

4.2 Defects reconstruction by MM based inversion praced

with that obtained at the ASM optimal point in cade
cylindrical defect (crack 3)

In Table 3, the results of the reconstructidrem using the MM are presented. The table
is organized in the same way as the previous one.

Figure 12.Comparison of the target impedance magnitude
with that obtained at the ASM optimal point in eax

cubical defect (crack 2)

1aZ]12]

x[m]

(crack 2)

y[m]

Table 3 Inversion results for the MM optimization o investigated crack

Figure 13.Comparison of the target impedance magnitude with
that obtained at the MM optimal point in case wbical defect

Name of Initial MRE No of coarse | No of fine Reconstructed | MRE
defect point for x. model model size of defect for x;
[mm] [%0] evaluation evaluations [%0]
Crack 1 0.20 0.32
(ellipsoidal 0.75 12% 5 6 1.07 7.61%
flaw) 0.375 0.49
Crack 2 0.100 0.49
(cuboidal 0.375 14% 3 4 1.98 6,7%
flaw) 0.187 0.494
- 0.100 0.287
(cylindrica 0.375 13% 4 5 1.063 7.1%
| flaw) 0.187 0.447




Figure 14.Comparison of the target impedance magnitude Figure 15.Comparison of the target impedance magnitude
with that obtained at the MM optimal point in cade with that obtained at the MM optimal point in cade
ellipsoidal defect (crack 1) ellipsoidal defect (crack 3)

The comparison between the target impedance andc#theulated for the reconstructed
shape of defects is shown in Fig. 13, 14 and Kpeetively.

4 .3Discussion

Based on the results included in both tables @an conclude that the application of the
SM or the MM methodology leads to a decrease inprgational time for the estimation of
the defects parameters using ECT data. The optwiation is reached after only a few
evaluation of time-consuming fine model.

Tables 2 and 3 show the good working of bothimization methods where for example
in case of the elliptical defect 5 (6) evaluatioreed to be performed in the fine FE model
and 5 (6) parameter extraction procedures, seetiequ@l) for the SM algorithm and
equation (28) for the MM algorithm. In general, & technique need less evaluation of a
fine model in order to obtain the comparable restdilthe defects reconstruction with
respect to their accuracy. We save approximatedy 60 CPU time when using the SM or
MM algorithm, compared to the use of Tikhonov and\@ ) regularization in the fine FE
model only. The reconstructed defects are accuvhen using SM and MM. The MM is
however able to recover the defect more accurdbety the difference is small and
negligible. The results presented in this papemstmat the quality of the implemented
coarse model relatively to the fine model is satigfry. As shown in Fig. 9 there is not a
large misalignment between the parameter spacthe afoarse and fine model, i.e. the shift
in parameter space between both models is relgtsrehll. This explains the convergence
of the SM method. In the response space, a misaégh exists which explains the more
accurate convergence of the MM method comparekde®M method. Indeed, it is difficult
for the SM method to deal with misaligned modelsesponse space. However, we need to
stress that the difference between MM and SM lksstiall. Both methods are thus suitable
for recovering defects using the models presemteatlis paper. In order to further improve
the accuracy of ECT, eddy current array technology,the application of multiple eddy
current excitation probes, can be used.

5 Conclusion

We investigated in this paper the eddy currenelise problem which relied on the
parameters estimation of the surface slot locateddonductive plate made of Inconel 600. In
order to accelerate the process of reconstruct@ed on the time-consuming FEM model,
we applied the two-level techniques ASM and MM witiation. According to this
methodology, a suitable coarse model is neededutrcase, for the purpose of 3D defect
reconstruction, the reduced VIM approach was apgpkerthermore, the proposed algorithm



was tested for varying shapes of defects. In albered cases we achieved a proper result
for defect parameters estimation, where the syiothedta was used as an input data.
According to our experience, the two-level invemsfrocedures allow to save up to 50%
CPU time in comparison with the optimization by meaof regularized Gauss-Newton
algorithm in the same FE model. In this work otlg specific kinds of surface defects were
considered. Therefore, the reconstruction of atyitrshapes of defects when using real
measurement data from ECT system can be treafadhier research.
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